Chemical Challenges and Opportunities in Critical Materials

David K. Shuh

Actinide Chemistry Group, Chemical Sciences Division
Director, The Glenn T. Seaborg Center
Lawrence Berkeley National Laboratory Berkeley, California 94720 USA

Email: DKShuh@lbl.gov; Tel. 510.486.6937
Challenging Chemistry: Separations and Process

- **Rare earth element characteristics**
 - Difficulty of separating and extracting rare earth elements from ore bodies

- Separating/purifying rare earths from other rare earth elements

- General knowledge of rare earth element chemistry compared to other areas within chemistry

- Starting point for utilizing rare earths and a basis for future innovation
Chemistry Expertise for Critical Materials: Separations and Process

- Translate actinide (5f) element chemistry and experience expertise into rare earth (4f) separations, processes, and materials innovations

- New advanced chemistry for separations and processes

 Combinatorial

 Biomimetic

- Model of a novel rare earth complex. Four 1,2-HOPO building blocks coordinated to a Eu(III) metal center with a ninth cyano unit coordinated.

 K. N. Raymond et al. (LBNL/UC Berkeley)
A Separations Example for Thorium: Similar Approach for Rare Earths and Critical Materials?

- Novel molecule for thorium separation and sequestration
 - Waste prevention
 - Biotechnology
 - Nuclear energy

K. N. Raymond et al. (LBNL/UC Berkeley)
Critical Materials Chemistry: Catalysis

- Development of substitutes from transition metals for platinum-group metal catalysts used in large-scale chemical processes.
 - Catalyst discovery based on first-row transition metals
 - Synthetic, mechanistic, and characterization efforts
- New rare earth catalysts for bond-cleavage and bond-formation for hydrocarbons
- New diesel exhaust catalysts
Critical Materials Chemistry: Sustainability

- Re-use and recycling infrastructure-manufacturing, re-manufacturing, reclamation, and efficient process chemistry
 - Green chemistry and environmental technologies for materials processing

- Development of new, more accurate unit value-based lifecycle models to guide industry and policy decision-makers
Summary: Opportunities and Challenges

• New revolutionary applications of rare earths and Critical Materials from improved chemistry knowledge and research
 - Examples in separations and process chemistry
 - Challenges in catalysis
 - Discover and develop new alternatives and substitutes
 - Sustainable chemistry

• Support of fundamental and targeted research to ensure both scientific and economic leadership in Critical Materials

• Imperative to educate and train the next generation of scientists