College - General Chemistry Project
Table of Contents (by Section)
Chapter 1. Water: A Natural Wonder
Section 1.1. Phases of Matter
Section 1.2. Atomic Models
Section 1.3. Molecular Models
Section 1.4. Valence Electrons in Molecular Models: Lewis Structures
Section 1.5. Arranging Electron Pairs in Three Dimensions
Section 1.6. Polarity of the Water Molecule
Section 1.7. Why Is Water Liquid at Room Temperature?
Section 1.8. Further Structural Effects of Hydrogen Bonding in Water
Section 1.9. Hydrogen Bonds in Biomolecules
Section 1.10. Phase Changes: Liquid to Gas
Section 1.11. Counting Molecules: The Mole
Section 1.12. Specific Heat of Water: Keeping the Earth's Temperature Stable
Section 1.13. Outcomes Review
Section 1.14. EXTENSION -- Liquid Viscosity
Chapter 2. Aqueous Solutions and Solubility
Section 2.1. Substances in Solution
Section 2.2. Solutions of Polar Molecules in Water
Section 2.3. Characteristics of Solutions of Ionic Compounds in Water
Section 2.4. Formation of Ionic Compounds
Section 2.5. Aqueous Solutions of Ionic Compounds
Section 2.6. Precipitation Reactions of Ions in Solution
Section 2.7. Solubility Rules for Ionic Compounds
Section 2.8. Concentrations and Moles
Section 2.9. Mass-Mole-Volume Calculations
Section 2.10. Reaction Stoichiometry in Solutions
Section 2.11. Solutions of Gases in Water
Section 2.12. The Acid-Base Reaction of Water with Itself
Section 2.13. Acids and Bases in Aqueous Solutions
Section 2.14. Stoichiometry of Acid-Base Reactions
Section 2.15. Chemical Reactions of Dissolved Carbon Dioxide
Section 2.16. Outcomes Review
Section 2.17. EXTENSION -- La Chatelier's Principle
Chapter 3. Origin of Atoms
Section 3.1. The Nuclear Atom
Section 3.2. Spectroscopy and Stellar Composition
Section 3.3. Evolution of the Universe: Stars
Section 3.4. Nuclear Reactions
Section 3.5. Nuclear Reaction Energies
Section 3.6. Cosmic Elemental Abundance and Nuclear Stability
Section 3.7. Formation of Planets: The Earth
Section 3.8. Outcomes Review
Section 3.9. EXTENSION: Isotopes: Age of the Universe and a Taste of Honey
Chapter 4. Structure of Atoms
Section 4.1. Periodicity and the Periodic Table
Section 4.2. Light as a Wave
Section 4.3. Photoelectric Effect: Light as a Particle
Section 4.4. Why Atomic Spectra Look the Way They Do: Quantum Model of Atoms
Section 4.5. If a Wave Can Be a Particle, Can a Particle Be a Wave?
Section 4.6. The Wave Model of Electrons in Atoms
Section 4.7. Energies of Electrons in Atoms: Why Atoms Don't Collapse
Section 4.8. Multi-electron Atoms: Electron Spin
Section 4.9. Electron Shells and Periodicity
Section 4.10. Wave Equations and Atomic Orbitals
Section 4.11. Outcomes Review
Section 4.12. EXTENSION -- Energies of a Spherical Electron Wave
Chapter 5. Structure of molecules
Section 5.1. Isomers
Section 5.2. Lewis Structures and Molecular Models of Isomers
Section 5.3. Sigma molecular orbitals
Section 5.4. Sigma Molecular Orbitals and Molecular Geometry
Section 5.5. Multiple Bonds
Section 5.6. Pi Molecular Orbitals
Section 5.7. Delocalized pi orbitals
Section 5.8. Representations of Molecular Geometry
Section 5.9. Stereoisomerism
Section 5.10. Functional Groups -- Making Life Interesting
Section 5.11. Molecular Recognition
Section 5.12. Outcomes Review
Section 5.13. EXTENSION -- Antibonding Orbitals: The Oxygen Story
Chapter 6. Chemical Reactions
Section 6.1. Classifying Chemical Reactions
Section 6.2. Ionic Precipitation Reactions
Section 6.3. Lewis Acids and Bases: Definition
Section 6.4. Lewis Acids and Bases: Bronsted-Lowry Acid-Base Reactions
Section 6.5. Predicting Strengths of Lewis/Bronsted-Lowry Bases and Acids
Section 6.6. Lewis Acids and Bases: Metal Ion Complexes
Section 6.7. Lewis Acids and Bases: Electrophiles and Nucleophiles
Section 6.8. Formal Charge
Section 6.9. Oxidation-Reduction Reactions: Electron Transfer
Section 6.10. Balancing Oxidation-Reduction Reaction Equations
Section 6.11. Oxidation-Reduction Reactions of Carbon-containing Molecules
Section 6.12. Outcomes Review
Section 6.13. EXTENSION -- Titration
Chapter 7. Chemical Energetics: Enthalpy
Section 7.1. Energy and Change
Section 7.2. Thermal Energy (Heat) and Mechanical Energy (Work)
Section 7.3. Thermal Energy (Heat) Transfer
Section 7.4. State Functions and Path Functions
Section 7.5. System and Surroundings
Section 7.6. Calorimetry and Introduction to Enthalpy
Section 7.7. Bond Enthalpies
Section 7.8. Standard Enthalpies of Formation
Section 7.9. Harnessing Energy in Living Systems
Section 7.10. Enthalpy Revisited
Section 7.11. What Enthalpy Doesn't Tell Us
Section 7.12. Outcomes Review
Section 7.13 EXTENSION -- Gases: Pressure-Volume Work
Chapter 8. Entropy and Molecular Organization
Section 8.1. Mixing and Osmosis
Section 8.2. Probability and Change
Section 8.3. Counting Molecular Arrangements in Mixtures
Section 8.4. Implications for Mixing and Osmosis in Macroscopic Systems
Section 8.5. Energy Arrangements Among Molecules
Section 8.6. Entropy
Section 8.7. Phase Changes and Net Entropy
Section 8.8. Gibbs Free Energy
Section 8.9. Thermodynamics of Rubber
Section 8.10. Colligative Properties of Solutions
Section 8.11. Osmotic Pressure Calculations
Section 8.12. Thermodynamic Calculations for Chemical Reactions
Section 8.13. Why Oil and Water Don't Mix
Section 8.14. Ambiphilic Molecules: Micelles and Bilayer Membranes
Section 8.15. The Cost of Molecular Organization
Section 8.16. Outcomes Review
Section 8.17. Osmosis and Cell Membranes
Chapter 9. Chemical Equilibrium
Section 9.1. The Nature of Equilibrium
Section 9.2. Mathematical Expression for the Equilibrium Condition
Section 9.3. Acid-Base Reactions and Equilibria
ReSection 9.4. Solutions of Conjugate Acid-Base Pairs: Buffer Solutions
Section 9.5. Acid-Base Properties of Proteins
Section 9.6. Solubility Equilibria for Ionic Salts
Section 9.7. Thermodynamics and the Equilibrium Constant
Section 9.8. Temperature Dependence of the Equilibrium Constant
Section 9.9. Thermodynamics in Living Systems
Section 9.10. Outcomes Review
Section 9.11. EXTENSION -- Competing Equilibri
Chapter 10. Reduction and Oxidation: Electrochemistry
Section 10.1. Electrolysis
Section 10.2. Electric Current from Chemical Reactions
Section 10.3. Work From Electrochemical Cells
Section 10.4. Concentration Dependence of Cell Potentials
Section 10.5. Free Energy and Electrochemical Cells: The Nernst Equation
Section 10.6. Combining Cell Potentials for Reactions
Section 10.7. Half-Cell Potentials: Reduction Potentials
Section 10.8. Reduction Potentials and the Nernst Equation
Section 10.9. Carbon-Containing Reducing Agents: Glucose
Section 10.10. Coupled Redox Reactions
Section 10.11. Outcomes Review
Section 10.12. EXTENSION -- Cell Potentials and Non-Redox Equilibria
Chapter 11. Reaction Pathways
Section 11.1. Pathways of Change
Section 11.2. Measuring and Expressing Rates of Chemical Change
Section 11.3. Reaction Rate Laws
Section 11.4. Reaction Pathways or Mechanisms
Section 11.5. More Ways to Analyze Rate Data
Section 11.6. Temperature and Reaction Rates
Section 11.7. Light: Another Way to Activate a Reaction
Section 11.8 Outcomes Review
Section 11.9 EXTENSION – Enzymatic Catalysis