-
Research Grant for Greener Biologics Purification Methods ($150,000)
Professor Leo Choe Peng, Universiti Sains Malaysia, “Diafiltration of Monoclonal Antibody using pH Responsive Membrane with Positive Charge.
Professor Andrew Zydney, Penn State, “Countercurrent Staged Diafiltration for Monoclonal Antibody Formulation.”Research Grant for Greener Continuous Chemistry & Engineering Technology
A. John Blacker, Ph.D., University of Leeds, $50,000 “Process Development of Continuous Flow Oxidative Biotransformations.”
Graham Dobereiner, Ph.D., Temple University, $50,000 “Tandem catalytic process in flow: synthesis of amides via mild photochemical carbonylation using CO2 as a carbonyl source.”
Amanda C. Evans, Ph.D., California State University, $50,000 “Enz-Flow/Continuous Bioprocessing: Towards a green continuous flow synthesis of levomilnacipran.” -
In progress: Research Grant for Reduction of Amide
Matthias Beller, Leibniz-Institut für Katalyse, $50,000
“Hydrogenation of Amides promoted by Ru- and Fe-Pincer Complexes—Ligand-Metal Cooperative Catalysis for the Mild and Selective Synthesis of Amines”- Towards a general ruthenium-catalyzed hydrogenation of secondary and tertiary amides to amines, Jose R. Cabrero-Antonino, Elisabetta Alberico, Kathrin Junge, Henrik Jungea and Matthias Beller, Chem. Sci., 2016,(7), 3432-3442, DOI: 10.1039/C5SC04671H
- Efficient Base-Free Hydrogenation of Amides to Alcohols and Amines Catalyzed by Well-Defined Pincer Imidazolyl–Ruthenium Complexes, Jose R. Cabrero-Antonino, Elisabetta Alberico, Hans-Joachim Drexler, Wolfgang Baumann, Kathrin Junge, Henrik Junge, and Matthias Beller, ACS Catal., 2016, 6 (1), pp 47–54, DOI: 10.1021/acscatal.5b01955
In progress: Research Grant for Iron Catalysis Neal Mankad, University of Illinois at Chicago, $100,000
“Bimetallic Approach to Iron-Catalyzed Coupling Reactions” -
In progress: Research Grant for Non-Precious Metal Catalysis
Paul Chirik, Princeton University, $100,000
“Modern Alchemy: New Paradigms for Enabling Base Metal-Catalyzed Cross-Coupling in the Pharmaceutical Industry”In progress: Research Grant for Non-Precious Metal Catalysis
Daniel Weix, University of Rochester, $50,000
“Direct Synthesis of Alkylated Arenes and Heteroarenes from the Cross-Coupling of Heteroaromatic Halides in Non-Amide Solvents”Research Grant for Greener Solvent Research
Janet Scott, University of Bath, $100,000
“Intelligent Selection of Greener Solvents” -
Neil Garg, UCLA, $60,000
“Development of Green Nickel-Catalyzed Cross-Coupling Reactions”- Nickel-Catalyzed Suzuki-Miyaura Couplings in Green Solvents, Stephen D. Ramgren, Liana Hie, Yuxuan Ye, and Neil K. Garg, Org. Lett., 2013, 15 (15), pp 3950-3953.
DOI: 10.1021/ol401727y
- Nickel-Catalyzed Amination of Aryl Chlorides and Sulfamates in 2-Methyl-THF, Noah F. Fine Nathel, Junyong Kim, Liana Hie, Xingyu Jiang, and Neil K. Garg, ACS Catal., 2014, 4 (9), pp 3289-3293. DOI: 10.1021/cs501045v
- Nickel-Catalyzed Suzuki-Miyaura Cross-Coupling in a Green Alcohol Solvent for an Undergraduate Organic Chemistry Laboratory, Liana Hie, Jonah J. Chang, and Neil K. Garg, J. Chem. Educ., September 5, 2014 (web), DOI: 10.1021/ed500158p
- Nickel-Catalyzed Suzuki-Miyaura Couplings in Green Solvents, Stephen D. Ramgren, Liana Hie, Yuxuan Ye, and Neil K. Garg, Org. Lett., 2013, 15 (15), pp 3950-3953.
-
Shannon Stahl, University of Wisconsin-Madison, $150,000
“Oxidation/Epoxidation Methods Without the Use of Chlorinated Solvents: Chemoselective Aerobic Alcohol Oxidation Catalyzed by Earth-Abundant Metals”- Copper/TEMPO-Catalyzed Aerobic Alcohol Oxidation: Mechanistic Assessment of Different Catalyst Systems, Jessica M. Hoover, Bradford L. Ryland, and Shannon S. Stahl, ACS Catal., 2013, 3 (11), pp 2599-2605. DOI: 10.1021/cs400689a
- Copper(I)/ABNO-Catalyzed Aerobic Alcohol Oxidation: Alleviating Steric and Electronic Constraints of Cu/TEMPO Catalyst Systems, Janelle E. Steves and Shannon S. Stahl, J. Am. Chem. Soc., 2013, 135 (42), pp 15742-15745. DOI: 10.1021/ja409241h
- Continuous-Flow Aerobic Oxidation of Primary Alcohols with a Copper(I)/TEMPO Catalyst, Jodie F. Greene, Jessica M. Hoover, David S. Mannel, Thatcher W. Root, and Shannon S. Stahl, Org. Process Res. Dev., 2013, 17 (10), pp 1247-1251. DOI: 10.1021/op400207f
- Aerobic Alcohol Oxidation Using a Copper(I)/TEMPO Catalyst System: A Green, Catalytic Oxidation Reaction for the Undergraduate Organic Chemistry Laboratory, Nicholas J. Hill, Jessica M. Hoover, and Shannon S. Stahl, J. Chem. Educ., 2013, 90 (1), pp 102-105. DOI: 10.1021/ed300368q
- Mechanism of Copper(I)/TEMPO-Catalyzed Aerobic Alcohol Oxidation, Jessica M. Hoover, Bradford L. Ryland, and Shannon S. Stahl, J. Am. Chem. Soc., 2013, 135 (6), pp 2357-2367. DOI: 10.1021/ja3117203
- Highly Practical Copper(I)/TEMPO Catalyst System for Chemoselective Aerobic Oxidation of Primary Alcohols, Jessica M. Hoover and Shannon S. Stahl, J. Am. Chem. Soc., 2011, 133 (42), pp 16901-16910. DOI: 10.1021/ja206230h
Wei Zhang, University of Massachusetts-Boston, $25,000
"Greener Grignard Reactions"
- Comparative performance evaluation and systematic screening of solvents in a range of Grignard reactions, Asha Kadam, Mylinh Nguyen, Michael Kopach, Paul Richardson, Fabrice Gallou, Zhao-Kui Wan, and Wei Zhang, Green Chem., 2013, 15, pp 1880-1888. DOI: 10.1039/C3GC40702K
Charles Liotta, Georgia Tech University, $150,000
“Green and Effective Continuous Catalytic Homo-Nazarov Cyclization Towards Multi-Step Synthesis of Heteroaromatic Ring-Fused Clyclohexanones” -
David Cole-Hamilton, University of St. Andrews, $150,000
“Amide Hydrogenation to Amines”- Catalytic Reduction of Amides Avoiding LiAlH4 or B2 H 6 , Deborah L. Dodds, David J. Cole-Hamilton, (2013) Chapter 1, pp 1-36, In Sustainable Catalysis; Challenges and Practices for the Pharmaceutical and Fine Chemical Industries; (eds. Peter J. Dunn, K. K. Hii, Michael J. Krische, Michael T. Williams), John Wiley & Sons, Inc.: Hoboken, New Jersey. DOI: 10.1002/9781118354520.ch01
- Homogeneous catalytic hydrogenation of amides to amines, Jacorien Coetzee, Deborah L. Dodds, Jurgen Klankermayer, Sandra Brosinski, Walter Leitner, Alexandra M.Z. Slawin, and David J. Cole-Hamilton, Chem. Eur. J. 2013, 19, (33), pp 11039-11050. DOI: 10.1002/chem.201204270
- Upon the hydrogenation of amides to amines (Correction to Chem. Commun., 2007, 3154), Dodds, D. L.; Coetzee, J.; Brosinski, S.; Klankermeyer, J.; Leitner, W.; Cole-Hamilton, D. J. Chem. Commun.,2012, (48), pp 12249-12262. DOI: 10.1039/C2CC90426H
- The First Continuous Flow Hydrogenation of Amides to Amines, Jacorien Coetzee, Haresh Manyar, Christopher Hardacre, and David J. Cole-Hamilton, ChemCatChem, 2013, (5), pp 2843-2847. DOI: 10.1002/cctc.201300431
-
Robert Crabtree, Yale University, $160,000
“Atom Economic Alcohol Activation and Amide Synthesis Using Base-Metal Catalysts Heterogenized on Titania Nanoparticles”- Dehydrogenation as a substrate-activating strategy in homogeneous transition metal catalysis, Graham E. Dobereiner and Robert H. Crabtree, Chem. Rev., 2010, 110, pp 681-703. DOI: 10.1021/cr900202j
- Green alcohol couplings without transition metal catalysts: base mediated β-alkylation of alcohols in aerobic conditions, Laura J. Allen and Robert H. Crabtree, Green Chem., 2010, 12, pp 1362-1364. DOI: 10.1039/C0GC00079E
- An Organometallic Future in Green and Energy Chemistry?, Robert H. Crabtree, Organometallics, 2011, 30 (1), pp 17-19. DOI: 10.1021/om1009439
- Multifunctional Ligands in Homogeneous Catalysis, Robert H. Crabtree, New J. Chem., 2011, 35, pp 18-23. DOI: 10.1039/C0NJ00776E
- An Experimental-Theoretical Study of the Factors that Affect the Switch between Ruthenium-Catalyzed Dehydrogenative Amide Formation versus Amine Alkylation, Ainara Nova, David Balcells, Nathan D. Schley, Graham E. Dobereiner, Robert H. Crabtree, and Odile Eisenstein, Organometallics, 2010, 29 (23), pp 6548-6558.
- Synthesis and Computational Studies of Mg Complexes Supported by 2,2':6,2''-Terpyridine Ligands, Louise M. Guard , Julio L. Palma, William P. Stratton, Laura J. Allen, Gary W. Brudvig, Robert H. Crabtree, Victor S. Batista, and Nilay Hazar, Dalton Trans., 2012, 41, pp 8098-8110. DOI: 10.1039/C2DT12426B
-
Chao-Jun Li, McGill University, $130,000
“Chiral Amines via Asymmetric Multi-component Reactions”- The Development of Catalytic Nucleophilic Additions of Terminal Alkynes in Water, Chao-Jun Li, Acc. Chem. Res., 2010, 43 (4), pp 581-590. DOI: 10.1021/ar9002587
- Rhodium-catalyzed arylation of α-Amido Sulfones with Arylboronic Acids in Water-Toluene Biphasic Reaction System, Xiao-Yong Dou, Qi Shuai, Liang-Nian He, and Chao-Jun Li, Inorg. Chim. Act., 2011, 369, pp 284-287. DOI: 10.1016/j.ica.2010.09.056
- Self-catalytic, solvent-free or in/on water protocol: aza-Friedel–Crafts reactions between 3,4-dihydroisoquinoline and 1- or 2-naphthols, Patricia D. Macleod, Zhiping Li, and Chao-Jun Li, Tetrahedron, 2010, 66, pp 1045-1050. DOI: 10.1016/j.tet.2009.11.008
- Access to a-Functionalized Glycine Derivatives with Arylboronic Acid via Imino Amides, Liang Zhao, Xiaohong Liao, and Chao-Jun Li, Synlett, 2009, pp 2953-2956. DOI: 10.1055/s-0029-1218266
- Copper-catalyzed Amine-Alkyne-Alkyne Addition Reaction: An Efficient Method For the Synthesis of alpha,alpha-Alkynyl-beta-amino Acid Derivatives, Lei Zhou, Qi Shuai, Huan-Feng Jiang, and Chao-Jun Li, Chem. Eur. J., 2009, 15, pp 11668-11674. DOI: 10.1002/chem.200901416
- An Unusual Peroxide-Mediated Amination of Cycloalkanes with Nitroarenes, Guojun Deng, Wen-Wen Chen, and Chao-Jun Li, Adv. Synth. Catal. 2009, 351, 353-356. DOI: 10.1002/adsc.200800689
- Iron-Catalyzed Three-Component Coupling of Aldehyde, Alkyne and Amine under Neat Conditions in Air, Wen-Wen Chen, Rene V. Nguyen, and Chao-Jun Li, Tetrahedron Lett., 2009, 50, pp 2895-2898. DOI: 10.1016/j.tetlet.2009.03.182
- Copper-catalyzed Four-component Coupling between Aldehydes, Amines, Alkynes, and Carbon Dioxide, Woo-Jin Yoo and Chao-Jun Li, Adv. Syn. Catal., 2008, 350, pp 1503-1506. DOI: 10.1002/adsc.200800232
- Peroxide-Mediated Efficient Addition of Cycloalkanes to Imines, Guojun Deng and Chao-Jun Li, Tetrahedron Lett., 2008, 49, pp 5601-5604. DOI: 10.1016/j.tetlet.2008.07.040
Michael Krische, University of Texas-Austin, $129,000
“Byproduct-Free Synthesis of Chiral Amines via C-C Bond Forming Transfer Hydrogenation and Hydrogen Auto-Transfer”- Enantioselective Iridium Catalyzed Carbonyl Allylation from the Alcohol or Aldehyde Oxidation Level Using Allyl Acetate as an Allyl Metal Surrogate, In Su Kim, Ming-Yu Ngai, and Michael J. Krische, J. Am. Chem. Soc. 2008, 130 (20), pp 6340-6341. DOI: 10.1021/ja802001b
- Ruthenium Catalyzed C-C Bond Forming Transfer Hydrogenation: Carbonyl Allylation from the Alcohol or Aldehyde Oxidation Level Employing Acyclic 1,3-Dienes as Surrogates to Preformed Allyl Metal Reagents, Fumitoshi Shibahara, John F. Bower, and Michael J. Krische, J. Am. Chem. Soc., 2008, 130 (2), pp 6338-6339. DOI: 10.1021/ja801213x
- Carbonyl Propargylation from the Alcohol or Aldehyde Oxidation Level Employing 1,3-Enynes as Surrogates to Preformed Allenylmetal Reagents: A Ruthenium Catalyzed C-C Bond Forming Transfer Hydrogenation, Ryan L. Patman, Vanessa M. Williams, John F. Bower, and Michael J. Krische, Angew. Chem. Int. Ed. 2008, 47 (28), pp 5220-5223. DOI: 10.1002/anie.200801359
- Ruthenium Catalyzed C-C Bond Formation via Transfer Hydrogenation: Branch-Selective Reductive Coupling of Allenes to Paraformaldehyde and Higher Aldehydes, Ming-Yu Ngai, Eduadas Skucas, and Michael J. Krische, Org. Lett., 2008, 10 (13), pp 2705-2708 DOI: 10.1021/ol800836v
- Enantioselective Iridium Catalyzed Carbonyl Allylation from the Alcohol or Aldehyde Oxidation Level via Transfer Hydrogenative Coupling of Allyl Acetate: Departure from Chirally Modified Allyl Metal Reagents in Carbonyl Addition, In Su Kim, Ming-Yu Ngai, and Michael J. Krische, J. Am. Chem. Soc., 2008, 130 (44), pp 14891-14899. DOI: 10.1021/ja805722e
- anti-Diastereo- and Enantioselective Carbonyl Crotylation from the Alcohol or Aldehyde Oxidation Level Employing a Cyclometallated Iridium Catalyst: α-Methyl Allyl Acetate as a Surrogate to Preformed Crotylmetal Reagents, In Su Kim, Soo Bong Han, and Michael J. Krische, J. Am. Chem. Soc., 2009, 131 (7), pp 2514-2520. DOI: 10.1021/ja808857w
- Branch-Selective Reductive Coupling of 2-Vinyl Pyridines and Imines via Rhodium Catalyzed C-C Bond Forming Hydrogenation, Venukrishnan Komanduri, Christopher D. Grant, and Michael J. Krische, J. Am. Chem. Soc., 2008, 130 (38), pp 12592-12593. DOI: 10.1021/ja805056g
- Catalyst-Directed Diastereoselectivity in Hydrogenative Couplings of Acetylene to α-Chiral Aldehydes: Formal Synthesis of All Eight L-Hexoses, Soo Bong Han, Jong Rock Kong, and Michael J. Krische, Org. Lett. 2008, 10 (18), pp 4133-4135. DOI: 10.1021/ol8018874
- Diene Hydroacylation from the Alcohol or Aldehyde Oxidation Level via Ruthenium-Catalyzed C-C Bond-Forming Transfer Hydrogenation: Synthesis of β,γ-Unsaturated Ketones, Fumitoshi Shibahara, John F. Bower, and Michael J. Krische, J. Am.Chem. Soc., 2008, 130 (43), pp 14120-14122. DOI: 10.1021/ja805356j
- Direct Vinylation of Alcohols or Aldehydes Employing Alkynes as Vinyl Donors: A Ruthenium Catalyzed C-C Bond Forming Transfer Hydrogenation, Ryan L. Patman, Mani Raj Chaulagain, Vanessa M. Williams, and Michael J. Krische, J. Am. Chem. Soc., 2009, 131 (6), pp 2066-2067. DOI: 10.1021/ja809456u
- Hydroacylation of 2-Butyne from the Alcohol or Aldehyde Oxidation Level via Ruthenium Catalyzed C-C Bond Forming Transfer Hydrogenation, Vanessa M. Williams, Joyce C. Leung, Ryan L. Patman, and Michael J. Krische, Tetrahedron, 2009, 65 (26), pp 5024-5029. DOI: 10.1016/j.tet.2009.03.068
- Enantioselective Carbonyl Reverse Prenylation from the Alcohol or Aldehyde Oxidation Level Employing 1,1-Dimethylallene as the Prenyl Donor, Soo Bong Han, In Su Kim, Hoon Han, and Michael J. Krische, J. Am. Chem. Soc. 2009, 131 (2), 6916-6917 DOI: 10.1021/ja902437k
- 1,n-Glycols as Dialdehyde Equivalents in Iridium Catalyzed Enantioselective Carbonyl Allylation and Iterative Two-Directional Assembly of 1,3-Polyols, Yu Lu, In Su Kim, Abbas Hassan, David J. Del Valle, Michael J. Krische, Angew. Chem. Int. Ed. 2009, 48 (27), pp 5018-5021. DOI: 10.1002/anie.200901648
- Enantioselective Allylation, Crotylation and Reverse Prenylation of Substituted Isatins via Iridium Catalyzed C-C Bond Forming Transfer Hydrogenation, Junji Itoh, Soo Bong Han, and Michael J. Krische, Angew. Chem. Int. Ed., 2009, 48 (34), pp 6313-6316. DOI: 10.1002/anie.200902328
- Elongation of 1,3-Polyols via Iterative Catalyst-Directed Carbonyl Allylation from the Alcohol Oxidation Level, Abbas Hassan, Yu Lu, and Michael J. Krische, Org. Lett., 2009, 11 (14), pp 3112-3115. DOI: 10.1021/ol901136w
- All Carbon Quaternary Centers via Ruthenium Catalyzed Hydroxymethylation of 2-Substituted Butadienes Mediated by Formaldehyde: Beyond Hydroformylation, Tomas Smejkal, Hoon Han, Bernhard Breit, and Michael J. Krische, J. Am. Chem. Soc., 2009, 131 (30), pp 10366-10367 DOI: 10.1021/ja904124b
- Catalytic Carbonyl Addition through Transfer Hydrogenation: A Departure from Preformed Organometallic Reagents, John F. Bower, In Su Kim, Ryan L. Patman, and Michael J. Krische, Angew. Chem. Int. Ed., 2009, 48 (1), pp 34-46. DOI: 10.1002/anie.200802938
- Formation of C-C Bonds via Ruthenium-Catalyzed Transfer Hydrogenation: Carbonyl Addition from the Alcohol or Aldehyde Oxidation Level, Fumitoshi Shibahara and Michael J. Krische, Chem. Lett., 2008, 37 (11), pp 1102-1107. DOI: 10.1246/cl.2008.1102
- Formation of C-C Bonds via Catalytic Hydrogenation and Transfer Hydrogenation: Vinylation, Allylation and Enolate Addition, Ryan L. Patman, John F. Bower, In Su Kim, Michael J. Krische, Aldrichim. Acta, 2008, 41 (4), pp 95-104.
- Diastereo- and Enantioselective Reductive Aldol Addition of Vinyl Ketones via Catalytic Hydrogenation, Soo Bong Han, Abbas Hassan, and Michael J. Krische, Synthesis 2008, 17, pp 2669-2679. DOI: 10.1055/s-2008-1067220
-
Robert Maleczka and Milton Smith, Michigan State University, $100,000
“Catalytic C-H Activation/Cross-Coupling of Aromatics (Avoiding the Preparation of Haloaromatics)”- Boc Groups as Protectors and Directors for Ir-Catalyzed C-H Borylation of Heterocycles, Venkata A. Kallepalli, Feng Shi, Sulangna Paul, Edith N. Onyeozili, Robert E.. Maleczka, Jr. and Milton R. Smith, III, J. Org. Chem., 2009, 74 (23), pp 9199-9201. DOI: 10.1021/jo901822b
- Silyl Phosphorus and Nitrogren Donor Chelates for Homogeneous Ortho Borylation Catalysis, Behnaz Ghaffari, Sean M. Preshlock, Donald L. Plattner, Richard J. Staples, Peter E. Maligres, Shane W. Krska, Robert E. Maleczka, Jr. and Milton R. Smith, III, J. Am. Chem. Soc., 2014, 136 (41), pp 14345-14348. DOI: 10.1021/ja506229s
- High-Throughput Optimization of Ir-Catalyzed C-H Borylation: A Tutorial for Practical Applications, Sean M. Preshlock, Behnaz Ghaffari, Peter E. Maligres, Shane W. Krska, Robert E. Maleczka, Jr. and Milton R. Smith, III, J. Am. Chem. Soc., 2013, 135 (20), pp 7572-7582. DOI: 10.1021/ja400295v
- Copper Puts Arenes in a Hard Position (A Chemistry Perspective), Robert E. Maleczka, Jr., Science, 2009, 323 (5921), pp 1572–1573. DOI: 10.1126/science.1172298
Jianliang Xiao, University of Liverpool, $126,166
“Hydrogenation of Amides by Multifunctional Catalysts via Ground State Destabilisation”
ACS GCI's Green Chemistry and Engineering Conference
The 2025 Green Chemistry & Engineering Conference will be held June 23-26 in Pittsburgh, PA, with the theme Good Health & Well-Being Through Sustainable Chemistry.