FOR IMMEDIATE RELEASE

ACS News Service Weekly PressPac: May 07, 2014

Scientists link honeybees’ changing roles throughout their lives to brain chemistry

"MALDI Imaging Analysis of Neuropeptides in the Africanized Honeybee (Apis mellífera) Brain: Effect of Ontogeny"
Journal of Proteome Research

Scientists have been linking an increasing range of behaviors and inclinations from monogamy to addiction to animals’, including humans’, underlying biology. To that growing list, they’re adding division of labor — at least in killer bees. A report published in ACS’ Journal of Proteome Research presents new data that link the amounts of certain neuropeptides in these notorious bees’ brains with their jobs inside and outside the hive.

Mario Sergio Palma and colleagues explain that dividing tasks among individuals in a group is a key development in social behavior among Hymenoptera insects, which include bees, ants, sawflies and wasps. One of the starkest examples of this division of labor is the development of “castes,” which, through nutrition and hormones, results in long-lived queens that lay all the thousands of eggs in a colony and barren workers that forage for food and protect the hive. Bee researchers had already observed that honeybees, including Africanized Apis mellifera, better known as “killer” bees, divide tasks by age. As workers get older, their roles change from nursing and cleaning the hive to guarding and foraging. Palma’s team wanted to see whether peptides in the brain were associated with the bees’ shifting duties.

They found that the amounts of two substances varied by time and location in the brains of the honeybees in a way that mirrored the timing of their changing roles. “Thus, these neuropeptides appear to have some functions in the honeybee brain that are specifically related to the age-related division of labor,” the scientists conclude.

The authors acknowledge funding from the BIOprospecTA/FAPESP program.

Examining killer bees’ brains lends clues to the chemical underpinnings of their social behaviors.
Credit: Scott Bauer/U.S. Department of Agriculture