Sensing Human Behavior with Smart Garments

Presented by Trisha L Andrew 

Abstract

Smart apparel with embedded self-powered sensors can revolutionize human behavior monitoring by leveraging everyday clothing as the sensing substrate. The key is to inconspicuously integrate sensing elements and portable power sources into garments while maintaining the weight, feel, comfort, function and ruggedness of familiar clothes and fabrics. We use reactive vapor coating to transform commonly-available, mass-produced fabrics, threads or premade garments into a plethora of comfortably-wearable electronic devices by directly coating them with uniform and conformal films of electronically-active conjugated polymers. By carefully choosing the repeat unit structure of the polymer coating, we access a number of fiber- or fabric-based circuit components, including resistors, depletion-mode transistors, diodes, thermistors, and pseudocapacitors. Further, vapordeposited electronic polymer films are notably wash- and wear-stable and withstand mechanically-demanding textile manufacturing routines, enabling us to use sewing, weaving, knitting or embroidery procedures to create self-powered garment sensors. We will describe our efforts in monitoring heartrate, breathing, joint motion/flexibility, gait and sleep posture using loose electronic garments and highlight collaborative endeavors to combine signal processing, machine learning and human factor integration to predict behavior in selected at-risk populations.

Related Content