FOR IMMEDIATE RELEASE

ACS News Service Weekly PressPac: September 22, 2021

Microneedle patch delivers COVID-19 DNA vaccine; doesn’t require cold storage

“Separable Microneedle Patch to Protect and Deliver DNA Nanovaccines Against COVID-19”
ACS Nano

More than 2 billion people worldwide are fully vaccinated against COVID-19. However, many who live in resource-limited countries haven’t been able to get vaccines, partly because these areas lack temperature-controlled shipping and storage facilities. Now, researchers reporting in ACS Nano have developed a microneedle patch that delivers a COVID-19 DNA vaccine into the skin, causing strong immune responses in cells and mice. Importantly, the patch can be stored for over 30 days at room temperature.

To date, the U.S. Food and Drug Administration has authorized three vaccines for use during the COVID-19 pandemic: one based on protein, and two on RNA. All of them must be kept refrigerated or frozen, which limits their distribution to remote or resource-limited areas. In addition, the vaccines must be administered by a healthcare worker as an injection into a muscle. Because immune cells aren’t typically found in muscles, scientists have investigated various ways to deliver vaccines into the skin, which contains abundant antigen-presenting cells (APCs) and could therefore generate a stronger immune response. Hui Li, Guangjun Nie, Hai Wang and colleagues wanted to develop a microneedle patch that efficiently delivers a COVID-19 vaccine under the skin, causing potent and durable immunity without the need for a cold chain or painful injections.  

The researchers based their vaccine on DNA, which is easier to make than RNA or protein. It’s also more stable than RNA. However, in clinical trials, intramuscular DNA vaccines have been limited in their effectiveness because, unlike RNA or protein, the DNA must find its way inside the cell nucleus to work. By delivering the vaccine into APC-rich skin rather than muscle, the researchers reasoned that they could increase the chances that the DNA would enter the nucleus of an APC.

To make their delivery system, the team attached DNA sequences encoding either the SARS-CoV-2 spike protein or nucleocapsid protein to the surface of non-toxic nanoparticles. Inside the nanoparticles was an adjuvant — a molecule that helps stimulate an immune response. Then, the researchers coated a microneedle patch with the vaccine nanoparticles. The small rectangular patch contained 100 biodegradable microneedles, each less than 1/10 the diameter of a bee’s stinger, that could painlessly penetrate the skin’s outer layer. The researchers tested the system in mice, showing that the spike-protein-encoding microneedle patch caused strong antibody and T-cell responses, with no observable side effects. Because the vaccine patches can be stored at room temperature for at least 30 days without losing efficacy, they could be an important tool for developing COVID-19 vaccines with global accessibility, the researchers say.

The authors acknowledge funding from the National Natural Science Foundation of China and the Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, Chinese Academy of Sciences.

 

###

The American Chemical Society (ACS) is a nonprofit organization founded in 1876 and chartered by the U.S. Congress. ACS is committed to improving all lives through the transforming power of chemistry. Its mission is to advance scientific knowledge, empower a global community and champion scientific integrity, and its vision is a world built on science. The Society is a global leader in promoting excellence in science education and providing access to chemistry-related information and research through its multiple research solutions, peer-reviewed journals, scientific conferences, e-books and weekly news periodical Chemical & Engineering News. ACS journals are among the most cited, most trusted and most read within the scientific literature; however, ACS itself does not conduct chemical research. As a leader in scientific information solutions, its CAS division partners with global innovators to accelerate breakthroughs by curating, connecting and analyzing the world’s scientific knowledge. ACS’ main offices are in Washington, D.C., and Columbus, Ohio.

Registered journalists can subscribe to the ACS journalist news portal on EurekAlert! to access embargoed and public science press releases. For media inquiries, contact newsroom@acs.org.

Note: ACS does not conduct research but publishes and publicizes peer-reviewed scientific studies.

Media Contact

ACS Newsroom
newsroom@acs.org

###

La sociedad American Chemical Society (ACS) es una organización sin fines de lucro fundada en 1876 y aprobada por el Congreso de los Estados Unidos. La ACS se ha comprometido a mejorar la vida de todas las personas mediante la transformación del poder de la química. Su misión es promover el conocimiento científico, empoderar a la comunidad global y defender la integridad científica, y su visión es un mundo construido basándose en la ciencia. La Sociedad es líder mundial en la promoción de la excelencia en la educación científica y en el acceso a información e investigación relacionadas con la química a través de sus múltiples soluciones de investigación, publicaciones revisadas por expertos, conferencias científicas, libros electrónicos y noticias semanales periódicas de Chemical & Engineering News. Las revistas de la ACS se encuentran entre las más citadas, las más fiables y las más leídas en la literatura científica; sin embargo, la propia ACS no realiza investigación química. Como líder en soluciones de información científica, su división CAS se asocia con innovadores internacionales para acelerar los avances mediante la preservación, la conexión y el análisis de los conocimientos científicos del mundo. Las sedes principales de la ACS se encuentran en Washington, D.C., y Columbus, Ohio.

Los periodistas registrados pueden suscribirse al portal de noticias para periodistas de ACS en EurekAlert! para acceder a comunicados de prensa públicos y retenidos.  Para consultas de los medios, comuníquese con newsroom@acs.org.

Nota: ACS no realiza investigaciones, pero publica y divulga estudios científicos revisados por expertos. 

Microneedle pate
This microneedle patch could someday replace a needle for delivering COVID-19 vaccines.
Credit: Adapted from ACS Nano 2021, DOI: 10.1021/acsnano.1c03252
View larger image