FOR IMMEDIATE RELEASE

ACS News Service Weekly PressPac: January 26, 2022

‘Smart saddle’ could help equestrians hit their stride (video)

“Self-Rebound Cambered Triboelectric Nanogenerator Array for Self-Powered Sensing in Kinematic Analytics”
ACS Nano

Skilled equestrians make advanced riding maneuvers, like jumps, spins and piaffes, look effortless. But good riding requires balance and subtle cues to the horse, many of which are given through the rider’s posture, seat and legs. Now, researchers reporting in ACS Nano developed a prototype “smart saddle” that could help equestrians improve their biomechanics. Moreover, the self-powered saddle can alert others when a rider takes a fall. Watch a video of the smart saddle here.

Youtube ID: 2WyMc9qdhvo

Big data collection and analysis are becoming important components of many competitive sports because they provide real-time information on athletes’ performance and fitness. However, most systems are powered by batteries, often making them bulky and inflexible. In contrast, small, lightweight triboelectric nanogenerators (TENGs), which convert mechanical energy into electricity, are being tested for a variety of applications, from harvesting the energy of ocean waves to charging cell phones through walking. In addition to powering themselves, TENGs can convert mechanical stimuli, such as pressure, touch or motion, into electrical signals. Ding Nan, Baodong Chen, Zhong Lin Wang and colleagues wanted to adapt TENGs to a smart saddle for challenging and potentially dangerous equestrian sports. 

The researchers made a thin, flexible, disk-shaped TENG that flattens when depressed and then rebounds when the pressure is removed. Under pressure, the internal layers of the TENG compress, transferring electrons from one electrode to another and generating a current, which stops when the pressure is released. 

The team placed an array of seven TENGs on the top surface of a saddle so they could detect differences in pressure in various regions of the seat. Electrical signals from the array revealed whether a rider was leaning forward, sitting in an upright position or leaning backward. The smart saddle also detected when a person was standing up and sitting down (a motion called “posting” in the equestrian world). When a rider falls off, the system can transmit a wireless signal to alert others, a safety feature that could allow an injured rider to be quickly found and treated, which is especially important when riding alone. The self-powered smart saddle, which has a response time of 16 milliseconds, could someday provide real-time statistical data and fall detection to equestrians and their coaches, the researchers say.

The authors acknowledge funding from the Natural Science Foundation of Beijing Municipality, the National Natural Science Foundation of China, the National Key R&D Project from Ministry of Science and Technology, the Beijing Municipal Science and Technology Commission, the Inner Mongolia scientific and technological achievements transformation project and the Inner Mongolia autonomous region major science and technology program.

###

The American Chemical Society (ACS) is a nonprofit organization founded in 1876 and chartered by the U.S. Congress. ACS is committed to improving all lives through the transforming power of chemistry. Its mission is to advance scientific knowledge, empower a global community and champion scientific integrity, and its vision is a world built on science. The Society is a global leader in promoting excellence in science education and providing access to chemistry-related information and research through its multiple research solutions, peer-reviewed journals, scientific conferences, e-books and weekly news periodical Chemical & Engineering News. ACS journals are among the most cited, most trusted and most read within the scientific literature; however, ACS itself does not conduct chemical research. As a leader in scientific information solutions, its CAS division partners with global innovators to accelerate breakthroughs by curating, connecting and analyzing the world’s scientific knowledge. ACS’ main offices are in Washington, D.C., and Columbus, Ohio.

Registered journalists can subscribe to the ACS journalist news portal on EurekAlert! to access embargoed and public science press releases. For media inquiries, contact newsroom@acs.org.

Note: ACS does not conduct research but publishes and publicizes peer-reviewed scientific studies.

Media Contact

ACS Newsroom
newsroom@acs.org

###

La sociedad American Chemical Society (ACS) es una organización sin fines de lucro fundada en 1876 y aprobada por el Congreso de los Estados Unidos. La ACS se ha comprometido a mejorar la vida de todas las personas mediante la transformación del poder de la química. Su misión es promover el conocimiento científico, empoderar a la comunidad global y defender la integridad científica, y su visión es un mundo construido basándose en la ciencia. La Sociedad es líder mundial en la promoción de la excelencia en la educación científica y en el acceso a información e investigación relacionadas con la química a través de sus múltiples soluciones de investigación, publicaciones revisadas por expertos, conferencias científicas, libros electrónicos y noticias semanales periódicas de Chemical & Engineering News. Las revistas de la ACS se encuentran entre las más citadas, las más fiables y las más leídas en la literatura científica; sin embargo, la propia ACS no realiza investigación química. Como líder en soluciones de información científica, su división CAS se asocia con innovadores internacionales para acelerar los avances mediante la preservación, la conexión y el análisis de los conocimientos científicos del mundo. Las sedes principales de la ACS se encuentran en Washington, D.C., y Columbus, Ohio.

Los periodistas registrados pueden suscribirse al portal de noticias para periodistas de ACS en EurekAlert! para acceder a comunicados de prensa públicos y retenidos.  Para consultas de los medios, comuníquese con newsroom@acs.org.

Nota: ACS no realiza investigaciones, pero publica y divulga estudios científicos revisados por expertos. 

Prototype "smart saddle" powered by TENGs
A TENG-powered smart saddle could help equestrians improve their riding, as well as alert others when they fall off their horse.
Video Credit: American Chemical Society
Watch Headline Science video