FOR IMMEDIATE RELEASE

ACS News Service Weekly PressPac: January 05, 2022

Immuno-CRISPR assay could help diagnose kidney transplant rejection early on 

"Highly Sensitive Immuno-CRISPR Assay for CXCL9 Detection"
Analytical Chemistry

When a patient receives a kidney transplant, doctors carefully monitor them for signs of rejection in several ways, including biopsy. However, this procedure is invasive and can only detect issues at a late stage. Now, researchers reporting in ACS’ Analytical Chemistry have developed a CRISPR-based assay that can sensitively and non-invasively detect a biomarker of acute kidney rejection in urine. This could someday help diagnose rejection earlier and without a biopsy. 

Kidney transplant recipients must take immunosuppressant drugs for the rest of their lives to help keep their immune systems from attacking the foreign organ. However, kidney rejection can still occur, particularly in the first few months after transplantation, which is known as acute rejection. Signs include increased serum creatinine levels and symptoms such as kidney pain and fever. Currently, the only way to definitively diagnose it is through biopsy, but this procedure can only detect problems at a relatively late stage. Being able to sensitively and non-invasively diagnose kidney rejection at an early stage would allow doctors to begin anti-rejection medication sooner. Researchers previously found that high levels of a cytokine protein called CXCL9 in the urine of kidney transplant patients was an early warning sign of rejection. But the current method for measuring CXCL9 (an enzyme-linked immunosorbent assay, or ELISA) doesn’t work very well in urine, limiting its sensitivity. So, Jonathan Dordick and colleagues wanted to develop a more sensitive technique for non-invasively diagnosing acute kidney rejection from urine.

The researchers based their detection method on CRISPR/Cas12a gene editing technology. In the presence of the CXCL9 protein, the CRISPR/Cas12a enzyme cuts a probe to produce a fluorescent signal. The researchers boosted the fluorescent signal by attaching a DNA barcode that aggregates a large number of CRISPR/Cas12a molecules, and is subsequently bound to an antibody that recognizes CXCL9. Importantly, unlike other CRISPR-based detection methods, PCR amplification is not required, which makes the method easier to adapt to a device that could be used in a doctor’s office or even a patient’s home. When tested on urine samples from 11 kidney transplant patients, the new system accurately measured CXCL9 levels, with values very similar to an ELISA. However, because the immuno-CRISPR system is about 7 times more sensitive than an ELISA, it might be able to detect kidney transplant rejection at a very early stage, the researchers say.

The authors acknowledge funding from the National Institutes of Health.

###

The American Chemical Society (ACS) is a nonprofit organization founded in 1876 and chartered by the U.S. Congress. ACS is committed to improving all lives through the transforming power of chemistry. Its mission is to advance scientific knowledge, empower a global community and champion scientific integrity, and its vision is a world built on science. The Society is a global leader in promoting excellence in science education and providing access to chemistry-related information and research through its multiple research solutions, peer-reviewed journals, scientific conferences, e-books and weekly news periodical Chemical & Engineering News. ACS journals are among the most cited, most trusted and most read within the scientific literature; however, ACS itself does not conduct chemical research. As a leader in scientific information solutions, its CAS division partners with global innovators to accelerate breakthroughs by curating, connecting and analyzing the world’s scientific knowledge. ACS’ main offices are in Washington, D.C., and Columbus, Ohio.

Registered journalists can subscribe to the ACS journalist news portal on EurekAlert! to access embargoed and public science press releases. For media inquiries, contact newsroom@acs.org.

Note: ACS does not conduct research but publishes and publicizes peer-reviewed scientific studies.

Media Contact

ACS Newsroom
newsroom@acs.org

###

La sociedad American Chemical Society (ACS) es una organización sin fines de lucro fundada en 1876 y aprobada por el Congreso de los Estados Unidos. La ACS se ha comprometido a mejorar la vida de todas las personas mediante la transformación del poder de la química. Su misión es promover el conocimiento científico, empoderar a la comunidad global y defender la integridad científica, y su visión es un mundo construido basándose en la ciencia. La Sociedad es líder mundial en la promoción de la excelencia en la educación científica y en el acceso a información e investigación relacionadas con la química a través de sus múltiples soluciones de investigación, publicaciones revisadas por expertos, conferencias científicas, libros electrónicos y noticias semanales periódicas de Chemical & Engineering News. Las revistas de la ACS se encuentran entre las más citadas, las más fiables y las más leídas en la literatura científica; sin embargo, la propia ACS no realiza investigación química. Como líder en soluciones de información científica, su división CAS se asocia con innovadores internacionales para acelerar los avances mediante la preservación, la conexión y el análisis de los conocimientos científicos del mundo. Las sedes principales de la ACS se encuentran en Washington, D.C., y Columbus, Ohio.

person holding side with illustration of kidney superimposed on torso
A CRISPR-based method could help diagnose kidney transplant rejection early and non-invasively
Credit: phugunfire/Shutterstock.com